What is IPv6, and why is adoption taking so long
Need of an in-between equipment to make IPv4 and IPv6 communication possible
What is IPv6 and do I need it
Internet Protocol Version 6 (IPv6) is a network layer protocol which allows communication and data transfers to take place over the network. IPv6 came into existence in 1998 with the sole purpose to take over and replace IPv4 protocol one day.
IPv4 protocol, the previous standard, consists of four number strings – each containing three digits separated by dots. A standard IPv4 address is 32-bit and looks something like 255.255.255.255, which allows 4.2 billion unique IP addresses.
With wireless and network-attached devices increasing rapidly by the day, the internet will exhaust all unique IPv4 addresses at some point. It was expected to happen in the early 2010s, but we haven’t run out of IPv4 addresses yet as IPv4 addresses get sold and re-used. Though, the IP address exhaustion problem that is looming on the horizon. To come up with a new standard of network layer protocol that allows more unique IP addresses to be created, IPv6 was standardized.
IPv6 protocol, which is 128-bits, consists of eight numbered strings, each containing four characters (alphanumeric), separated by a colon. This gives us an unbelievable amount of unique IP addresses; 340,282,366,920,938,463,463,374,607,431,768,211,456 to be precise. It also assures that we will not run out of unique IP addresses to assign to new devices anytime soon. (source)
What’s the difference between IPv4 and IPv6?
IPv6 is not totally different from IPv4: what you have learned in IPv4 will be valuable when you deploy IPv6. The differences between IPv6 and IPv4 are in five major areas: addressing and routing, security, network address translation, administrative workload, and support for mobile devices. IPv6 also includes an important feature: a set of possible migration and transition plans from IPv4.
Of course, there are standards and protocols and procedures for the coexistence of IPv4 and IPv6: tunneling IPv6 in IPv4, tunneling IPv4 in IPv6, running IPv4 and IPv6 on the same system (dual stack) for an extended period of time, and mixing and matching the two protocols in a variety of environments.
What about network security?
IPv6 was built from the ground up to be capable of end-to-end encryption. While this technology was retrofitted into IPv4, it remains an optional extra and isn’t universally used. The encryption and integrity-checking used in current VPNs is a standard component in IPv6, available for all connections and supported by all compatible devices and systems. Widespread adoption of IPv6, when properly implemented, could therefore make man-in-the-middle (MITM) attacks significantly more difficult.
Are there any performance benefits?
Enabling IPv6 probably won’t speed up your internet connection.
However, there are also notable benefits in IPv6 for mobile devices, which will be able to maintain the same address when moving from one connection to another — going from a 3G network to Wi-Fi provided by your local coffee shop, for example. Rather than picking up a new address from the new connection service, the mobile device can keep the same “home” address at all times. This removes the need for “triangular routing,” in which data sent to the mobile device must first go through the network of the mobile provider. These changes not only provide greater speed, simplicity and usability, but also make connections more resilient and secure. Given the prevalence of mobile devices today, this enhancement should be most welcome.
IPv6 also offers better autoconfiguration, with ICMP6 messages used to determine an appropriate address and configuration. Upgraded DCHP6 is also available for those who require more stateful control of network connections, and of course conventional static address assignment is possible if needed. The combination of a wider address pool and a more sophisticated address structure solves a lot of address conflict issues, which arise most commonly when company mergers or takeovers lead to integration and readdressing of networks.
Let’s sum up!
Insane amount of IP addresses
Better response time
Disadvantages of IPv6
Need of an in-between equipment to make IPv4 and IPv6 communication possible
Transition requires some effort and time
Does edpnet support IPv6?
Yes! We are offering a native IPv6 connection via dual stack (IPv4 + IPv6).
Do I still need a router with NAT?
With IPv6 the purpose is to give all your devices a public IP address. If you use our solution in combination with a FRITZ!Box modem/router then you will notice that all your devices in your local network will automatically receive a public IP address from the subnet that was given to you.
In this case you do not long receive a single IPv4 address, but a whole /64 subnet with IPv6 address to give to your local devices. The amount of IP address you will receive with a /64 subnet will be more than you will ever need.
What are the costs of changing?
IPv6 addresses themselves do not cost any money. Of course you’ll have to check your own infrastructure to see if any changes have to be made to make it IPv6-ready.
Do I have to change right now?
The transition does not have to take place today or tomorrow so there is no reason to panic. It is important though that you take the appropriate measures to get ready for IPv6 as it demands some knowledge, expertise and budget.
I’m ready to try, how can I activate IPv6?
In order to benefit from IPv6 on your connection, you need to activate it via your My edpnet account and enable it on your modem/router, as well as the computers, smartphones, and other devices connected to it.
Below are the guides that would help you to prepare for the change.
What is IPv6, and why is adoption taking so long?
For the most part the dire warnings about running out of internet addresses have ceased because, slowly but surely, migration from the world of Internet Protocol Version 4 (IPv4) to IPv6 has begun, and software is in place to prevent the address apocalypse that many were predicting.
But before we see where are and where we’re going with IPv6, let’s go back to the early days of internet addressing.
What is IPv6 and why is it important?
IPv6 is the latest version of the Internet Protocol, which identifies devices across the internet so they can be located. Every device that uses the internet is identified through its own IP address in order for internet communication to work. In that respect, it’s just like the street addresses and zip codes you need to know in order to mail a letter.
The previous version, IPv4, uses a 32-bit addressing scheme to support 4.3 billion devices, which was thought to be enough at the time it was implemented. However, with the growth of the internet, personal computers, smartphones and now Internet of Things, it became clear that the world needed more addresses.
Fortunately, the Internet Engineering Task Force (IETF) recognized this nearly 25 years ago. In 1998, it created IPv6, which instead uses 128-bit addressing to support approximately 340 trillion trillion (or 2 to the 128th power). Instead of the IPv4 address method of four sets of one- to three-digit numbers, IPv6 uses eight groups of four hexadecimal digits, separated by colons.
What are the benefits of IPv6?
In its work, the IETF not only added more address space, it included enhancements to IPv6 compared with IPv4. The IPv6 protocol can handle packets more efficiently, improve performance and increase security. It enables internet service providers to reduce the size of their routing tables by making them more hierarchical.
What do IPv6 addresses look like
You’re probably familiar with IPv4 addresses, which are written in four parts separated by dots like this: 45.48.241.198. Each part written in conventional Base 10 numerals represents an eight-bit binary number from 0 to 255 (000000 to 1111111, written in binary).
An IPv6 address looks like this: 2620:cc:8000:1c82:544c:cc2e:f2fa:5a9b. Instead of four numbers, there are eight, and they’re separated by colons rather than commas. And yes, they are all numbers. There are letters in there because IPv6 addresses are written in hexadecimal (Base 16) notation, which means 16 different symbols are required to uniquely represent the Base 10 numbers 1-16. The ones used are numerals 0-9 plus letters A-F. Each of these numbers represents a 16-bit binary number ranging from 000000000000 to 11111111111111.
Network address translation (NAT) and IPv6
Adoption of IPv6 has been delayed in part due to network address translation (NAT), which takes private IP addresses and turns them into public IP addresses. That way a corporate machine with a private IP address can send and receive packets from machines located outside the private network that have public IP addresses.
Without NAT, large corporations with thousands or tens of thousands of computers would devour enormous quantities of public IPv4 addresses if they wanted to communicate with the outside world. But those IPv4 addresses are limited and nearing exhaustion to the point of having to be rationed.
NAT helps alleviate the problem. With NAT, thousands of privately addressed computers can be presented to the public internet by a NAT machine such as a firewall or router.
The way NAT works is when a corporate computer with a private IP address sends a packet to a public IP address outside the corporate network, it first goes to the NAT device. The NAT notes the packet’s source and destination addresses in a translation table.
The NAT changes the source address of the packet to the public-facing address of the NAT device and sends it along to the external destination. When a packet replies, the NAT translates the destination address to the private IP address of the computer that initiated the communication. This can be done so that a single public IP address can represent multiple privately addressed computers.
Who is deploying IPv6?
As of March 2022, according to Google, the IPv6 adoption rate globally is around 34%, but in the U.S. it’s at about 46%.
Carrier networks and ISPs have been the first group to start deploying IPv6 on their networks, with mobile networks leading the charge. For example, T-Mobile USA has more than 90% of its traffic going over IPv6 as of March 2002, with Verizon Wireless close behind at 82.63%. Comcast and AT&T have their networks at 70% and 73%, respectively, according to the industry group World Ipv6 Launch. The past few years have seen broader IPv6 adoption in Asia and South America, with India currently standing at about 62% and the Indian wireless carrier Reliance Jio Infocomm topping World Ipv6 Launch’s network adoption charts with more than 93%.
Just under 30% of the Alexa Top 1000 websites are currently reachable over IPv6, World IPv6 Launch says, a number that has remained stubbornly stagnant over recent years.
Enterprises are trailing in deployment. For instance, a RIPE Labs report on IPv6 adoption noted that U.S. use of IPv6 actually dropped from 2020 to 2021, and speculated that the reason might be that people who had worked at home early in the COVID-19 pandemic were returning to the office and IPv4-based corporate networks.
Complexity, costs, and time needed to complete a transition are all reasons that corporate IT is gun-shy over migration projects. In addition, many medium-sized and small enterprises outsource their networking needs to service providers, who themselves don’t have a strong incentive to migrate in the absence of a push from their customers.
When will more deployments occur?
Enterprise resistance to large-scale IPv6 migration is slowing adoption overall. Patrick Hunter, Charter Communications’ director of IT enterprise network and telecom, lays out many of the factors in play, noting that while most network administrators know migration is inevitable, nobody wants to necessarily wants to be a pioneer if the risk is causing problems for their own networks and applications.
As he puts it, admins have the attitude of “I’m not going to break things and make life difficult just because some insist everyone should hurry to the new protocol.” Not all companies are resisting—Amazon is migrating its serverless and container AWS workloads to IPv6. But inertia, plus the fact that, as noted, widespread NAT use has staved off an IPv4 apocalypse, have reduced the incentives to make the move. The transition may not be complete until 2030 or later.
Nevertheless, as the price of IPv4 addresses begin to drop, the Internet Society suggests that enterprises sell off their existing IPv4 addresses to help fund IPv6 deployment. The Massachusetts Institute of Technology has done this, according to a note posted on GitHub. The university concluded that 8 million of its IPv4 addresses were “excess” and could be sold without impacting current or future needs since it also holds 20 nonillion IPv6 addresses. (A nonillion is the numeral one followed by 30 zeroes.)
In addition, as more deployments occur, more companies will start charging for the use of IPv4 addresses, while providing IPv6 services for free. UK-based ISP Mythic Beasts says “IPv6 connectivity comes as standard,” while “IPv4 connectivity is an optional extra.”
Pushing for a faster transition will take government action, though many Western governments don’t have this on their to-do list. One country moving to IPv6 in a big way is China. In 2021, the Cyberspace Administration of China unveiled an ambitious roadmap, aiming to have 800 million active IPv6 users by the end of 2025.
When will IPv4 be “shut off”?
Most of the world “ran out” of new IPv4 addresses between 2011 and 2018 – but we won’t completely be out of them as IPv4 addresses get sold and re-used, and any leftover addresses will be used for IPv6 transitions.
There’s no official switch-off date, so people shouldn’t be worried that their internet access will suddenly go away one day. As more networks transition, more content sites support IPv6 and more end users upgrade their equipment for IPv6 capabilities, the world will slowly move away from IPv4.
Why is there no IPv5?
There was an IPv5 that was also known as Internet Stream Protocol, abbreviated simply as ST. It was designed for connection-oriented communications across IP networks with the intent of supporting voice and video.
It was successful at that task, and was used experimentally. One shortcoming that undermined its popular use was its 32-bit address scheme – the same scheme used by IPv4. As a result, it had the same problem that IPv4 had – a limited number of possible IP addresses. That led to the development and eventual adoption of IPv6. Even though IPv5 was never adopted publicly, it had used up the name IPv5.
- 9 career-boosting Wi-Fi certifications
- What is MPLS, and why isn’t it dead yet?
- 11 ways to list and sort files on Linux
- 5 free network-vulnerability scanners
- How-to measure enterprise Wi-Fi speeds
- Networking
- Internet
- Internet of Things